Impulse noise exposure in rats causes cognitive deficits and changes in hippocampal neurotransmitter signaling and tau phosphorylation.

نویسندگان

  • Bo Cui
  • Mingquan Wu
  • Xiaojun She
  • Hongtao Liu
چکیده

Noise exposure has been characterized as a stressor, and its non-auditory effects on the central nervous system have been established both epidemiologically and experimentally. Little is known about the impact of impulse noise on the brain, however. In this study, we examined the effects of impulse noise stress on spatial learning and memory and on associated changes in the hippocampus. Rats were exposed to 20 sound impulses with a peak sound pressure of 165 dB and duration of 100 ms. Impulse noise stress led to a temporary decrease in cognitive function as evidenced by poor spatial memory in the Morris water maze (MWM). Effects of noise on the glutamate (Glu)-N-methyl-D-aspartic acid receptor (NMDAR) signaling system and hippocampal tau phosphorylation were investigated by high performance liquid chromatography, Western blotting, and immunohistochemistry. The concentrations of Glu and aspirate (Asp) in the hippocampus were increased at 30 min after exposure and remained elevated for the entire observation period (24 h), while the content of glycine (Gly) was stable for several hours following noise but also increased by 24 h after noise stress. Impulse noise stress also caused a significant increase in NMDAR 2B subunit (NR2B) expression and a two-phase increase in tau phosphorylation in hippocampus. Immunohistochemistry confirmed tau hyperphosphorylation in hippocampus that was most prominent in the dentate gyrus (DG) and CA1 region. These findings demonstrate that impulse noise stress impairs early spatial memory, possibly by disrupting Glu-NMDAR signaling and triggering aberrant tau hyperphosphorylation in hippocampus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...

متن کامل

Zataria multiflora could improve hippocampal tau protein and TNFα levels and cognitive behavior defects in a rat model of Alzheimer's disease

Objective: Zataria multiflora (ZM) is a plant with ethnopharmacological value which was recently tested to reduce symptoms of Alzheimer’s disease (AD). The aim of the present study was to determine the effect of ZM essential oil on spatial cognitive and noncognitive behavior, as well as hippocampal tau protein and tumor necrosis factor alpha (TNFα) concentrations in ra...

متن کامل

Effects of chronic noise on the corticotropin-releasing factor system in the rat hippocampus: relevance to Alzheimer’s disease-like tau hyperphosphorylation

BACKGROUND Chronic noise exposure has been associated with tau hyperphosphorylation and Alzheimer's disease (AD)-like pathological changes, but the underlying mechanism is unknown. In this study, we explored the effects of long-term noise exposure on the corticotropin-releasing factor (CRF) system in the hippocampus and its role in noise-induced tau phosphorylation. METHODS Sixty-four rats we...

متن کامل

Effect of chronic noise exposure on expression of N-methyl-D-aspartic acid receptor 2B and Tau phosphorylation in hippocampus of rats.

OBJECTIVE To study the effect of chronic noise exposure on expression of N-methyl-D-aspartic acid receptor 2B (NR2B) and tau phosphorylation in hippocampus of rats. METHODS Twenty-four male SD rats were divided in control group and chronic noise exposure group. NR2B expression and tau phosphorylation in hippocampus of rats were detected after chronic noise exposure (100 dB SPL white noise, 4 ...

متن کامل

Exposure to Chronic Noise Reduces the Volume of Hippocampal Subregions in Rats

Objective The hippocampal circuit integrity is crucial for learning and memory. Despite the existing reports on hippocampal–dependent memory impairment due to noise stress, there are only a few studies on the effect of noise stress on anatomical structure of hippocampus. The present study is aimed to investigate the likely effects of chronic noise exposure on the volume of rat hippocampus. Mate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 1427  شماره 

صفحات  -

تاریخ انتشار 2012